# Alkyl, Hydrido-, and Related Compounds of Ruthenium(II) with Trimethylphosphine. X-Ray Crystal Structures of Hydrido(tetrahydro-borato- $H H^{\prime}$ )tris(trimethylphosphine)ruthenium(iI), Tri- $\mu$-chlorobis[tris(trimethylphosphine)ruthenium(II)] Tetrafluoroborate, and Bis[cis-methyltetrakis(trimethylphosphine)ruthenio]mercury(I)-Tetrahydrofuran(1/1) $\dagger$ 

John A. Statler and Geoffrey Wilkinson *<br>Chemistry Department, Imperial College of Science and Technology, London SW7 2AY Mark Thornton-Pett and Michael B. Hursthouse*<br>Chemistry Department, Queen Mary College, London E1 4NS


#### Abstract

A number of trimethylphosphine complexes of ruthenium(11) with alkyl, hydrido-, halogeno-, acetato-, and tetrahydroborato-ligands and in addition the halide-bridged complex $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$ and the mercury-bridged species [cis-RuMe $\left.\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$ have been synthesized. The $X$-ray crystal structures of $\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ and of the tri- $\mu$-chloro- and mercury-bridged complexes have been determined. In the borohydride the metal atom has an octahedral co-ordination, with a bidentate $\mathrm{BH}_{4}$ - ligand. The two $\mathrm{Ru}-\mathrm{H}$ (borohydride) bonds [1.81(4) and 1.85(4) $\AA$ ] are trans to the hydride [Ru-H 1.49 (4) Å] and one phosphine [Ru-P 2.259(3) $\AA$ ]; the latter is shorter than those to the other phosphines $[2.304(3)$ and $2.305(3) \AA$ ] which are trans to each other. The chloro-bridged complex has the usual confacial bioctahedral $\mathrm{X}_{3} \mathrm{MY}_{3} \mathrm{MX}_{3}$ structure with Ru-P and Ru-Cl bond lengths in the ranges $2.248(4)-2.256(4)$ and $2.463(4)-2.488(4) \AA$ respectively. In the mercurybridged species as the tetrahydrofuran solvate, the $\mathrm{Ru}-\mathrm{Hg}$ distances are 2.798(4) and 2.800(4) $\AA$ and the $\mathrm{Ru}-\mathrm{Hg}-\mathrm{Ru}$ angle is $170.7(2)^{\circ}$; $\mathrm{Ru}-\mathrm{C}$ distances are 2.21 (1) and 2.23(1) $\AA$ whilst $\mathrm{Ru}-\mathrm{P}$ distances range from $2.308(4)$ to $2.344(4) \AA$ with those trans to the Ru-Me bonds shorter than the rest. The mercury atom makes close contacts with a number of hydrogens from methyl groups.


There have been relatively few studies of ruthenium(in) phosphine complexes with mixed hydrido-, alkyl, or halide ligands. Halogeno- and hydrido-alkyls having bidentate phosphines are known ${ }^{1,2}$ as well as five-co-ordinate, monoalkyl triphenylphosphine complexes, ${ }^{3,4}$ e.g. $\mathrm{RuClMe}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{4}$ No compounds of the type $\operatorname{RuXR}\left(\mathrm{PR}^{\prime}\right)_{4}\left(\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{alkyl} ; \mathrm{X}=\right.$ halide, hydride, or alkyl other than R ) are known. The syntheses and reactions of ruthenium compounds with trimethylphosphine as the ligand are now described. The various reactions are summarized in the Scheme.

## Results and Discussion

Protic Cleavages.-(a) cis-RuMe $\mathbf{2}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$. Tertiary phosphine complexes of ruthenium with cis-halogeno- and alkyl groups have been synthesized from the corresponding halide using an excess of trialkylaluminium. ${ }^{1,4}$ We have synthesized cis-RuClMe $\left(\mathrm{PMe}_{3}\right)_{4}$ from the corresponding dimethyl compound, cis- $\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}{ }^{5}$ by the slow addition of 1 equivalent of hydrogen chloride in diethyl ether at $-78^{\circ} \mathrm{C}$, when the reaction is immediate and virtually quantitative. The product precipitates from the cold solution as a yellow powder. The addition of a second equivalent of HCl in $\mathrm{Et}_{2} \mathrm{O}$ to the product mixture in $\mathrm{Et}_{2} \mathrm{O}$ cleaves the remaining methyl and produces $\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Cl}_{2}$. ${ }^{6}$

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of $c i s-\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ shows an $\mathrm{A}_{2} \mathrm{BC}$ pattern. The metal-bound methyl is coupled to all phosphorus atoms and appears as an eleven-line multiplet in the ${ }^{1} \mathrm{H}$ spectrum.

Using acetic acid instead of HCl , cis- $\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{Me}-$

[^0]$\left(\mathrm{PMe}_{3}\right)_{4}$ is obtained. The i.r. spectrum has both a $\mathrm{C}-\mathrm{O}$ band ( $1573 \mathrm{~cm}^{-1}$ ) and a $\mathrm{C}=\mathrm{O}$ band ( $1702 \mathrm{~cm}^{-1}$ ), indicating a unidentate acetate ligand. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum is similar to that of cis-RuClMe $\left(\mathrm{PMe}_{3}\right)_{4}$, having an $\mathrm{A}_{2} \mathrm{BC}$ pattern.
(b) Metallocycles. When HCl was added slowly to 1 equivalent of $\mathrm{Ru}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]\left(\mathrm{PMe}_{3}\right)_{4}{ }^{5}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ the product was $\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Cl}_{2}$. The analogous reaction with $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{RuCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (see below) gave a similar result.
(c) cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$. The dropwise addition of 1 equivalent of HCl to a solution in ether of cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}{ }^{7}$ at $-78{ }^{\circ} \mathrm{C}$ gave a high yield of cis- $\mathrm{RuClH}\left(\mathrm{PMe}_{3}\right)_{4}$. The earlier procedure gave low yields and oily side products that interfered with the purification.

Alkylation Studies.-The interaction of cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ with 1 equivalent of MgMeCl or half an equivalent of $\mathrm{MgMe}_{2}$ in diethyl ether gave cis- $\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ as expected. A similar reaction with $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{l}}\right) \mathrm{Cl}$ gave the known metallacycle $\mathrm{Ru}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]\left(\mathrm{PMe}_{3}\right)_{4}{ }^{5}$ in low yield. The interaction with $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ produces the cyclometallated compound, $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{RuCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of this compound is a $\mathrm{A}_{2} \mathrm{BC}$ pattern with B and C overlapping. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ spectra are consistent only with that of an orthometallated benzyl.

Whereas $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Bu}^{\prime}\right) \mathrm{Cl}$ appears not to react with either trans $-\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ or $\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Cl}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ or tetrahydrofuran (thf), $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ reacts readily in $\mathrm{Et}_{2} \mathrm{O}$ with either compound to produce the benzyl metallacycle. The interaction of $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with $\mathrm{MgEt}_{2}$ will be described separately.

Hydride Substitutions of cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$--(a) Lithium tetrahydroborate. One equivalent of $\mathrm{LiBH}_{4}$ reacts with cis-


Scheme. Reactions of ruthenium phosphine complexes: (i) $\mathrm{LiBH}_{4} ;($ ii $) \mathbf{M g M e C l}$; (iii) $\mathbf{H C l}$; (iv) $\mathrm{Na} / \mathrm{Hg}$; (v) NaOMe ; $(v i) \mathbf{M g}(\mathrm{CH} \mathbf{2} \mathbf{P h}) \mathrm{Cl}$; (vii) $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Bu}^{t}\right) \mathrm{Cl}$; (viii) $\mathrm{AgBF}_{4}$; (ix) $\mathrm{MeCO}_{2} \mathrm{H}$


Figure 1. The structure of $\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}$
$\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in $\mathrm{Et}_{2} \mathrm{O}$ to produce the known complex cis$\mathrm{RuClH}\left(\mathrm{PMe}_{3}\right)_{4}{ }^{6}$ When $\gtrsim 2$ equivalents of $\mathrm{LiBH}_{4}$ were used, the reaction under identical conditions resulted in the formation of mer- $\mathrm{RuH}\left[(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right]\left(\mathrm{PMe}_{3}\right)_{3}$. This borohydride was also made from trans- $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ and from $\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2}-$ $\mathrm{Cl}_{2}$ using an excess of $\mathrm{LiBH}_{4}$.
Other compounds of stoicheiometry $\mathrm{MH}\left(\mathrm{H}_{2} \mathrm{BH}_{2}\right)\left(\mathrm{PR}_{3}\right)_{n}$, $n=3$ or 4 , are known ${ }^{8-11}$ but the only crystal structure available is that of $\mathrm{MoH}\left(\mathrm{H}_{2} \mathrm{BH}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{4} .{ }^{11}$ The variable-temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$ for the ruthenium compounds are similar to those observed by Meek and co-workers. ${ }^{10}$ The bridging hydride trans to the lone $\mathrm{Ru}-\mathrm{H}$ exchanges positions

Table 1. Selected bond lengths $(\AA)$ and angles ( ${ }^{\circ}$ ) for $\mathrm{RuH}\left(\mathrm{H}_{2} \mathrm{BH}_{2}\right)$ $\left(\mathrm{PMe}_{3}\right)_{3}$

| $\mathrm{Ru}-\mathrm{H}(1)$ | 1.49(4) | $\mathrm{Ru}-\mathrm{P}(1)$ | 2.305(3) |
| :---: | :---: | :---: | :---: |
| Ru-H(11) | 1.81(4) | $\mathrm{Ru}-\mathrm{P}(2)$ | 2.259(3) |
| $\mathrm{Ru}-\mathrm{H}(12)$ | 1.85(4) | $\mathrm{Ru}-\mathrm{P}(3)$ | 2.304(3) |
|  | $\mathrm{P}-\mathrm{C}(\mathrm{Me})$ | 1.820-1.835(6) |  |
| $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{H}(1)$ | 72.4(14) | $\mathbf{P}(2)-\mathrm{Ru}-\mathrm{H}(1)$ | 89.0 (14) |
| $\mathrm{P}(2)-\mathrm{Ru}-\mathrm{P}(1)$ | 95.6(5) | $\mathrm{P}(3)-\mathrm{Ru}-\mathrm{H}(1)$ | 95.7(14) |
| $\mathrm{P}(3)-\mathrm{Ru}-\mathrm{P}(1)$ | 163.5(5) | $\mathrm{P}(3)-\mathrm{Ru}-\mathrm{P}(2)$ | 95.6(5) |
| B $\cdot \cdot \mathrm{Ru}-\mathrm{H}(1)$ | 133.7(13) | B $\cdots \mathrm{Ru}-\mathrm{P}(1)$ | 89.6(2) |
| B $\cdot \cdots \mathrm{Ru}-\mathrm{P}(2)$ | 136.0(1) | B $\cdot \cdot \mathrm{Ru}-\mathrm{P}(3)$ | 90.7(2) |
| $\mathrm{H}(11)-\mathrm{Ru}-\mathrm{H}(1)$ | 100.6(16) | $\mathrm{H}(11)-\mathrm{Ru}-\mathrm{P}(1)$ | 86.9(8) |
| $\mathrm{H}(11)-\mathrm{Ru}-\mathrm{P}(2)$ | 170.4(8) | $\mathbf{H}(11)-\mathrm{Ru}-\mathrm{P}(3)$ | 84.1(8) |
| $\mathrm{H}(11)-\mathrm{Ru} \cdots \mathrm{B}$ | 34.5(8) | $\mathrm{H}(12)-\mathrm{Ru}-\mathrm{H}(1)$ | 167.6(17) |
| $\mathrm{H}(12)-\mathrm{Ru}-\mathrm{P}(1)$ | 97.6(11) | $\mathrm{H}(12)-\mathrm{Ru}-\mathrm{P}(2)$ | 9.5(12) |
| $\mathrm{H}(12)-\mathrm{Ru}-\mathrm{P}(3)$ | 92.4(11) | $\mathrm{H}(12)-\mathrm{Ru} \cdots$ - | 36.6(11) |
| $\mathrm{H}(12)-\mathrm{Ru}-\mathrm{H}(11)$ | 70.9(14) |  |  |

with the two non-bridging hydrides on the boron at $80^{\circ} \mathrm{C}$. These hydrogens further exchange with the bridging hydride trans to $\mathrm{PMe}_{3}$ at $110^{\circ} \mathrm{C}$.

The structure of the compound $\mathrm{RuH}\left(\mathrm{H}_{2} \mathrm{BH}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ in the solid state has been determined by $X$-ray crystallography. A diagram of the structure is shown in Figure 1 whilst selected bond lengths and angles are given in Table 1. The proposed mer-octahedral geometry is confirmed. The two $\mathrm{Ru}-\mathrm{H}$ bonds to the chelating $\mathrm{BH}_{4}{ }^{-}$ligand are essentially equal, within experimental error, and are trans to the terminal $\mathrm{Ru}-\mathrm{H}$ bond and one $\mathrm{PMe}_{3}$ ligand. The Ru-P distance to this ligand is $0.045 \AA$ shorter than those to the other two phosphines, which are trans to each other.
(b) Lithium aluminium hydrides. By contrast with a similar reaction, ${ }^{1}$ the interaction of cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ and excess of $\mathrm{LiAlH}_{4}$ in refluxing thf did not produce the hydridomethyl complex, but only cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$. Similarly, the reaction


Figure 2. The structure of the cation $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right]^{+}$

Table 2. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}\right.$ -$\left.(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$

| $\mathrm{Ru}(1)-\mathrm{P}(1)$ | 2.256(4) | $\mathrm{Ru}(1)-\mathrm{Cl}(1)$ | 2.488(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)-\mathrm{P}(2)$ | 2.255(4) | $\mathrm{Ru}(1)-\mathrm{Cl}(2)$ | $2.463(4)$ |
| $\mathbf{R u}(1)-\mathbf{P}(3)$ | 2.248(4) | $\mathrm{Ru}(1)-\mathrm{Cl}(1 \mathrm{a})$ | 2.481(4) |
|  | P-C(Me) | 1.81-1.85(2) |  |
| $\mathbf{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 95.7(2) | $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 95.3(2) |
| $\mathbf{P}(\mathbf{3})-\mathrm{Ru}(1)-\mathbf{P}(\mathbf{2})$ | 95.1(2) | $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 93.1(2) |
| $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | 169.2(1) | $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | 90.2(2) |
| $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1 \mathrm{a})$ | 80.5(2) | $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 89.3(2) |
| $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | 92.7(2) | $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | 170.5(1) |
| $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$ | 81.2(2) |  |  |
| $\mathrm{Ru}(1)-\mathrm{Cl}(1)-\mathrm{Ru}(1 \mathrm{a})$ | 82.4(2) | $\mathrm{Ru}(1)-\mathrm{Cl}(2)-\mathrm{Ru}(1$ | ) 83.3(2) |

of cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in toluene at ambient temperature using only 0.25 equivalent of $\mathrm{LiAlH}_{4}$ resulted only in cis- $\mathrm{RuH}_{2}-$ ( $\left.\mathrm{PMe}_{3}\right)_{4}$ and unreacted starting compound. A 1:1 mixture of cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{LiAlH}(\mathrm{OMe})_{3}$, when refluxed in thf for $c a .1 \mathrm{~h}$ or when stirred for 1 week at ambient temperature in toluene, yielded cis-RuClH $\left(\mathrm{PMe}_{3}\right)_{4}$.
(c) Sodium methoxide. The hydridoalkyl complex, cis$\mathrm{RuHMe}\left(\mathrm{PMe}_{3}\right)_{4}$, was also formed readily from cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ by the reaction of an excess of NaOMe in thf. The mechanism of such a reaction for a triphenylphosphine complex has been discussed, ${ }^{12}$ although by contrast in the present instance no carbonyl complex was formed. The hydridoalkyl was also synthesized by methylation of cis-RuClH( $\left.\mathrm{PMe}_{3}\right)_{4}$ using MgMeCl . The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the complex has a 12-line pattern at $\delta 9.80$ p.p.m., indicating a cis geometry, which is further substantiated by the $\mathrm{A}_{2} \mathrm{BC}$ pattern of ${ }^{31} \mathbf{P}-\left\{{ }^{1} \mathrm{H}\right\}$ resonances. The ${ }^{31} \mathbf{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum reveals strong hydride coupling to the phosphorus atom at $\delta-11.2$ p.p.m., indicating a trans $\mathrm{H}^{-} \mathrm{Ru}^{-} \mathrm{P}$ group. The hydride is not coupled to the methyl hydrogens.

The interaction of cis-RuClMe(PMe $)_{4}$ with NaOMe in MeOH again gave cis- $\mathrm{RuHMe}\left(\mathrm{PMe}_{3}\right)_{4}$.

Reaction of cis-RuClMe(PMe $)_{4}$ with $\mathrm{AgBF}_{4}$. -When $\mathrm{AgBF}_{4}$ was added to cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in thf a precipitate containing $\mathrm{Ag}, \mathrm{Cl}$, and $\mathrm{PMe}_{3}$ was produced. A solid recovered from the yellow solution, when recrystallised from MeOH , was shown to be the previously unreported halide-bridged [ $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3}$ -$\left.\mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$. Many analogous bridged compounds are known, ${ }^{13-19}$ although few crystal structures have


Figure 3. The structure of $\left[\text { cis- } \mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$
been reported. ${ }^{16,17,19}$ Evidently, $\mathrm{AgBF}_{4}$ more efficiently abstracts phosphine than chlorine in this instance.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the salt is extremely complex, although the ${ }^{31} \mathrm{P}$ spectrum is merely a singlet at $\delta 22.6$ p.p.m. Although the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum clearly establishes that all fluorine present is as $\mathrm{BF}_{4}-$ because of the characteristic pattern of a broad singlet and a $1: 1: 1: 1$ quartet due to the two isotopes of boron, both F and Cl analyses were unsatisfactory as is sometimes observed with such ruthenium complexes.

The identity of this compound has been confirmed by $X$-ray crystallography. The structure of the cation is shown in Figure 2 and selected bond lengths and angles are given in Table 2. The cation, which has a confacial bioctahedral structure, is sited on a two-fold axis and the compound is isostructural with the cation $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}\left(\mu-\mathrm{CH}_{2}\right)_{2}\left(\mu-\mathrm{CH}_{3}\right) \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right]^{+}$ in its tetrafluoroborate salt. ${ }^{20}$ In the present cation the $\mathbf{R u}-\mathbf{P}$ and $\mathrm{Ru}-\mathrm{Cl}$ distances are internally almost equal, the small variations present being due, possibly, to crystal-packing effects.

Reaction of cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ with Sodium Amalgam.Whereas the reaction of trans $-\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ with $\mathrm{Na} / \mathrm{Hg}$ in thf produces cis- $\mathrm{RuClH}\left(\mathrm{PMe}_{3}\right)_{4},{ }^{6}$ interaction of $c i s-\mathrm{RuClMe}-$ $\left(\mathrm{PMe}_{3}\right)_{4}$ with $1 \%$ sodium amalgam over a period of 3 d at ambient temperature yields [cis- $\left.\mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$. This appears to be the first ruthenium-mercury complex containing phosphines, although some carbonyl analogues have been reported. ${ }^{21-23}$ When the reaction was run in thf, recrystallization from light petroleum produced a thf solvate. However, when the reaction was run in toluene no solvate was produced, although this product was contaminated with an oily substance even after several recrystallizations. The crystal structure of the tetrahydrofuran solvate shows the complex to have two eclipsed octahedra with one vertex in common at the mercury, see Figure 3 and Table 3. The $\mathrm{Ru}-\mathrm{Hg}-\mathrm{Ru}$ angle is $171^{\circ}$ and, when viewed along this direction, the methyl

Table 3. Selected bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ for [cis-RuMe$\left.\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$

| $\mathrm{Ru}(1)-\mathrm{Hg}$ | $2.800(4)$ | $\mathrm{Ru}(2)-\mathrm{Hg}$ | $2.798(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ru}(1)-\mathrm{P}(1)$ | $2.327(4)$ | $\mathrm{Ru}(2)-\mathrm{P}(5)$ | $2.312(4)$ |
| $\mathrm{Ru}(1)-\mathrm{P}(2)$ | $2.318(4)$ | $\mathrm{Ru}(2)-\mathrm{P}(6)$ | $2.344(4)$ |
| $\mathrm{Ru}(1)-\mathrm{P}(3)$ | $2.312(4)$ | $\mathrm{Ru}(2)-\mathrm{P}(7)$ | $2.308(4)$ |
| $\mathrm{Ru}(1)-\mathrm{P}(4)$ | $2.313(4)$ | $\mathrm{Ru}(2)-\mathrm{P}(8)$ | $2.325(4)$ |
| $\mathrm{Ru}(1)-\mathrm{C}(1)$ | $2.23(1)$ | $\mathrm{Ru}(2)-\mathrm{C}(2)$ | $2.21(1)$ |


| $\mathrm{Ru}(2)-\mathrm{Hg}-\mathrm{Ru}(1)$ | $170.7(2)$ |  |  |
| :--- | ---: | :--- | ---: |
|  |  |  | $81.2(5)$ |
| $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Hg}$ | $83.4(5)$ | $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Hg}$ | $81.5(5)$ |
| $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | $164.5(1)$ | $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{Hg}$ | $101.5(2)$ |
| $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | $90.8(2)$ | $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | $91.8(2)$ |
| $\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{Hg}$ | $158.2(1)$ | $\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | $96.5(2)$ |
| $\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | $98.0(2)$ | $\mathrm{P}(4)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | $100.2(2)$ |
| $\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Hg}$ | $78.1(3)$ | $\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | $89.0(3)$ |
| $\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | $88.4(3)$ | $\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | $179.6(1)$ |
| $\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{P}(4)$ | $80.2(3)$ |  |  |
|  |  |  |  |
| $\mathrm{P}(5)-\mathrm{Ru}(2)-\mathrm{Hg}$ | $80.2(5)$ | $\mathrm{P}(6)-\mathrm{Ru}(2)-\mathrm{Hg}$ | $83.5(2)$ |
| $\mathrm{P}(6)-\mathrm{Ru}(2)-\mathrm{P}(5)$ | $163.7(1)$ | $\mathrm{P}(7)-\mathrm{Ru}(2)-\mathrm{Hg}$ | $100.1(2)$ |
| $\mathrm{P}(7)-\mathrm{Ru}(2)-\mathrm{P}(5)$ | $91.5(2)$ | $\mathrm{P}(7)-\mathrm{Ru}(2)-\mathrm{P}(6)$ | $91.4(2)$ |
| $\mathrm{P}(8)-\mathrm{Ru}(2)-\mathrm{Hg}$ | $161.2(1)$ | $\mathrm{P}(8)-\mathrm{Ru}(2)-\mathrm{P}(5)$ | $95.6(2)$ |
| $\mathrm{P}(8)-\mathrm{Ru}(2)-\mathrm{P}(6)$ | $99.9(2)$ | $\mathrm{P}(8)-\mathrm{Ru}(2)-\mathrm{P}(7)$ | $98.3(2)$ |
| $\mathrm{C}(2)-\mathrm{Ru}(2)-\mathrm{Hg}$ | $79.9(3)$ | $\mathrm{C}(2)-\mathrm{Ru}(2)-\mathrm{P}(5)$ | $91.2(3)$ |
| $\mathrm{C}(2)-\mathrm{Ru}(2)-\mathrm{P}(6)$ | $85.8(3)$ | $\mathrm{C}(2)-\mathrm{Ru}(2)-\mathrm{P}(7)$ | $177.3(2)$ |
| $\mathrm{C}(2)-\mathrm{Ru}(2)-\mathrm{P}(8)$ | $81.9(3)$ |  |  |

groups are orientated approximately $90^{\circ}$ from one another [dihedral angle $\mathrm{C}(1) \mathrm{Ru}(1) \mathrm{Hg}(1) / \mathrm{C}(2) \mathrm{Ru}(2) \mathrm{Hg}(1)=92.63^{\circ}$ ]. A particular feature of this structure is the proximity to the mercury atom of several methyl hydrogens, from both metal and phosphine methyl groups $[\mathrm{Hg}-\mathrm{H}(13) 2.83,-\mathrm{H}(23) 2.83$, $-\mathrm{H}(113) 2.88,-\mathrm{H}(223) 2.94$, and $-\mathrm{H}(522) 2.73 \AA]$. This may well account for the low-energy $\mathrm{C}-\mathrm{H}$ stretch in the solid-state i.r. spectrum at $2810 \mathrm{~cm}^{-1}$.

The n.m.r. data are in accord with the solid-state structure. Thus, the ${ }^{1} \mathrm{H}$ spectrum for the $\mathrm{PMe}_{3}$ groups shows a triplet, a doublet, and a singlet in a $2: 1: 1$ ratio. The methyl appears as a broad nine-line resonance. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum at high field ( 101 MHz ) is a triplet, a doublet, and a singlet having mercury-coupled sidebands. The singlet is assigned as the phosphine trans to mercury because of its larger coupling to Hg . The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum at low field ( 36 MHz ) is an $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2}{ }^{-}$ $\mathrm{BB}^{\prime} \mathrm{CC}^{\prime}$ pattern. Table 4 summarizes the $\mathrm{P}-\mathrm{P}$ couplings for the structure 1.

(1)

## Experimental

Microanalyses were by Pascher (Bonn). Infrared spectra were obtained on a Perkin-Elmer 683 spectrometer using Nujol mulls unless otherwise specified. Nuclear magnetic resonance spectra were recorded on Bruker WM250 ( ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ ) and JEOL FX90Q $\left({ }^{13} \mathrm{C}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ instruments. The conductivities were measured using a Data Scientific PTI-18 conductivity meter.
All operations were carried out under argon or in vacuo.

Table 4. Phosphorus-phosphorus coupling constants for [cis$\mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{l}_{2} \mathrm{Hg}$

```
\(J\left(\mathrm{AA}^{\prime}\right)=J\left(\mathrm{BB}^{\prime}\right)=J\left(\mathrm{CC}^{\prime}\right)=J\left(\mathrm{AC}^{\prime}\right)=J\left(\mathrm{~A}^{\prime} \mathrm{C}\right)=0 \mathrm{~Hz}\)
\(J(\mathrm{AB})=J\left(\mathrm{AB}^{\prime}\right)=J(\mathrm{BC})=J\left(\mathrm{BC}^{\prime}\right)=J\left(\mathrm{~A}^{\prime} \mathrm{B}\right)=J\left(\mathrm{~A}^{\prime} \mathrm{B}^{\prime}\right)=\)
        \(J\left(\mathrm{~B}^{\prime} \mathrm{C}\right)=J\left(\mathrm{~B}^{\prime} \mathrm{C}^{\prime}\right)=9 \mathrm{~Hz}\)
\(J(\mathrm{AC})=J\left(\mathrm{~A}^{\prime} \mathrm{C}^{\prime}\right)=31 \mathrm{~Hz}\)
```

Tetrahydrofuran, diethyl ether, and light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ ) were distilled under dinitrogen from sodiumbenzophenone, toluene from sodium, acetonitrile from $\mathrm{CaH}_{2}$, and methanol from $\mathrm{Mg}(\mathrm{OMe})_{2}$ prior to use. Melting points were determined in sealed, evacuated capillaries and are uncorrected.

The compounds trans- $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4},{ }^{6,24}\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2-}$ $\mathrm{Cl}_{2}{ }^{6}$ and $\mathrm{LiAlH}(\mathrm{OMe})_{3}{ }^{25}$ were prepared by published procedures; cis- $\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ was prepared from either $\mathrm{Ru}_{2}-$ $\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4} \mathrm{Cl}^{5}$ or by the reaction of MgMeCl with trans $-\mathrm{RuCl}_{2}-$ $\left(\mathrm{PMe}_{3}\right)_{4}$ or $\left[\mathrm{Ru}(\mu-\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Cl}_{2} . \mathrm{HCl}$ in ether was prepared by bubbling anhydrous HCl through dry $\mathrm{Et}_{2} \mathrm{O}$ under argon, and was diluted and standardized before each use.

Analytical and other data for new compounds are collected in Table 5. N.m.r. data for ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ are in Tables 6-8.

## cis-Chloro(methyl)tetrakis(trimethylphosphine)ruthenium-

 (ii).-A $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCl in $\mathrm{Et}_{2} \mathrm{O}\left(5.2 \mathrm{~cm}^{3}, 1.3\right.$ mmol ) was added dropwise to a stirred solution of cis$\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(0.55 \mathrm{~g}, 1.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The pale yellow suspension was stirred for about 1 h at $-78{ }^{\circ} \mathrm{C}$, then warmed to ambient temperature. Solvent was removed under vacuum and the residue extracted with toluene ( $2 \times 25 \mathrm{~cm}^{3}$ ), which was filtered and concentrated to about 20 $\mathrm{cm}^{3}$. Cooling the solution to $-20^{\circ} \mathrm{C}$ yielded yellow prisms, which were washed with light petroleum ( $2 \times 2 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield (two crops): $0.47 \mathrm{~g}, 79 \%$.Alternatively, a slight deficiency of HCl was used and the dried residue washed with light petroleum ( $c a .5 \mathrm{~cm}^{3}$ ) to remove unreacted cis- $\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$. This latter method produced a sample sufficiently pure for synthetic purposes (typically above $97 \%$ by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r.) in greater than $90 \%$ yield. I.r.: $1295 \mathrm{~m}, 1277 \mathrm{~m}, 1$ 165w, 1 149w, 939s, 854m, 717m, $704 \mathrm{~m}, 657 \mathrm{~m}$, and $460 \mathrm{w} \mathrm{cm}{ }^{-1}$. The solid compound can be handled in air for brief periods.

## cis-Acetato(methyl)tetrakis(trimethylphosphine)ruthenium-

(II).--To a solution of $c i s-\mathrm{RuMe}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(0.81 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a 1.83 mol $\mathrm{dm}^{-3}$ solution of $\mathrm{MeCO}_{2} \mathrm{H}\left(1.0 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$. The solution was allowed to warm to ambient temperature and, after stirring for 3 h , the solvent was removed under vacuum. The residue was extracted with toluene ( $20 \mathrm{~cm}^{3}$ ), which was filtered, concentrated to $c a .10 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$ to give off-white microcrystals which were washed with light petroleum ( $2 \times 1 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield (two crops): $0.57 \mathrm{~g}, 64 \%$. I.r.: $1702,1573 \mathrm{~s}, 1402 \mathrm{~s}, 1333 \mathrm{~m}, 1299 \mathrm{~s}$, $1277 \mathrm{~s}, 971 \mathrm{~m}, 941 \mathrm{~s}, 854 \mathrm{~m}, 722 \mathrm{~m}, 699 \mathrm{~m}, 659 \mathrm{~m}$, and 616 w $\mathrm{cm}^{-1}$. The solid darkens quickly upon exposure to air; it also appears to be somewhat hygroscopic.
(2,2-Dimethylpropane-1,3-diyl)tetrakis(trimethylphosphine)-ruthenium(II).-To a stirred suspension of cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ ( $0.41 \mathrm{~g}, 0.90 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ was added an ether solution of $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{t}}\right) \mathrm{Cl}\left(1.7 \mathrm{~cm}^{3}, 0.54 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 0.93\right.$ mmol ). A white precipitate formed instantly and gas was evolved. After stirring for 2 h , the $\mathrm{Et}_{2} \mathrm{O}$ was removed under

Table 5. Analytical and physical data for new ruthenium compounds

| Compound | Colour | $\begin{aligned} & \text { M.p. }{ }^{\circ}{ }_{\left(\theta /{ }^{\circ} \mathrm{C}\right)} \end{aligned}$ | Analysis (\%) |  |  |  |  |  |  | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Found |  |  |  | Required |  |  |  |
|  |  |  | C | H | P | Other | C | H | P |  |
| cis- $\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}$ | Pale yellow | $b$ | 34.4 | 8.6 | 27.0 | 8.2 (Cl) | 34.3 | 8.6 | 27.2 | 7.8 |
| cis- $\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{Me}\left(\mathrm{PMe}_{3}\right)_{4}$ | Off-white | 166-169 | 37.0 | 8.4 | 25.2 |  | 37.6 | 8.8 | 25.8 |  |
| $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{RuCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ | White | 156-170 | 46.0 | 8.5 | 25.0 |  | 46.0 | 8.5 | 25.0 |  |
| mer-RuH $\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ | Yellow | 116-119 | 31.4 | 9.2 | 27.1 | 3.2 (B) | 31.3 | 9.3 | 26.9 | 3.2 |
| cis-RuHMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ | White | 156-163 | 36.6 | 9.1 | 28.5 |  | 37.0 | 9.6 | 29.4 |  |
| [cis-RuMe( $\left.\left.\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg} \cdot$ thf | Red-orange | 200-202 | 32.2 | 7.8 | 22.4 |  | 32.4 | 7.8 | 22.3 |  |
| $\left[c i s-\mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$ | Dark red | 194-195 | 31.0 | 8.0 | 23.4 |  | 30.0 | 7.6 | 23.8 |  |
| $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$ | Yellow | $>300$ | 25.7 | 6.4 | 22.3 | 10.0 (F) | 25.4 | 6.4 | 21.9 | 8.9 |
|  |  |  |  |  |  | 1.3 (B) |  |  |  | 1.3 |
|  |  |  |  |  |  | 10.2 (Cl) |  |  |  | 12.5 |

${ }^{4}$ All compounds decomposed upon melting. ${ }^{\text {b }}$ Decomposed without melting below $300^{\circ} \mathrm{C}$.

Table 6. ${ }^{1} \mathrm{H}$ N.m.r. data

| Compound | \%/p.p.m. ${ }^{\text {a }}$ | $\mathrm{J} / \mathrm{Hz}$ | Assignment |
| :---: | :---: | :---: | :---: |
| cis-RuClMe( $\mathrm{PMe}_{3}$ ) ${ }_{\text {4 }}$ | 4 $1.27 \mathrm{t}(18)$ | $J(\mathrm{PH})=3$ | trans $\mathrm{PMe}_{3}$ |
|  | 1.19, d(9) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$ |
|  | 0.90, d(9) | $J(\mathrm{PH})=8$ | cis $\mathrm{PMe}_{3}$ |
|  | $0.29, \mathrm{~d}$ of d(3) | $J(\mathrm{PH})=8,5,4$ |  |
| cis- $\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{Me}-$ ( $\mathrm{PMe}_{3}$ ) | 2.18, s(3) |  | $\mathrm{O}_{2} \mathrm{CMe}$ |
|  | 1.31, d(9) | $J(\mathrm{PH})=6$ | cis $\mathrm{PMe}_{3}$ |
|  | 1.23, t(18) | $J(\mathrm{PH})=3$ | trans $\mathrm{PMe}_{3}$ |
|  | 0.90, d(9) | $J(\mathrm{PH})=7$ | cis $\mathrm{PMe}_{3}$ |
|  | $0.04, \mathrm{t}$ of d(3) | $J(\mathrm{PH})=3,1$ | Me |
| $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{RuCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ | 4 7.52, d(1) | $J(\mathrm{HH})=7$ |  |
|  | 7.20, t (1) | $J(\mathrm{HH})=7$ |  |
|  | 7.11, $\mathrm{t}(1)$ | $J(\mathrm{HH})=7$ | phenyl H |
|  | $6.61, \mathrm{~d}(1)$ | $J(\mathrm{HH})=7$ |  |
|  | 1.35, m(2) |  | $\mathrm{CH}_{2}$ |
|  | 1.17, d(9) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$ |
|  | 1.03, t(18) | $J(\mathrm{PH})=3$ | trans $\mathrm{PMe}_{3}$ |
|  | 0.93, d(9) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$ |
| $\underset{\left(\mathrm{PMe}_{3}\right)_{3}}{\left.\operatorname{mer}-\mathrm{RuH}_{4}\right)-}$ | $6.1-4.5, \mathrm{~m}(2)$ |  | $\mathrm{BH}_{4}$ |
|  | 1.31, $\mathrm{t}(18)$ | $J(\mathrm{PH})=3$ <br> 㖪 | trans $\mathrm{PMe}_{3}$ |
|  | 1.08, d(9) | $J(\mathrm{PH})=8$ | cis $\mathrm{PMe}_{3}$ |
|  | $\begin{aligned} & -6.1 \text { to }-9.6, \\ & m(1) \end{aligned}$ |  | $\begin{aligned} & \text { H-H, trans } \\ & \text { to } \mathrm{H} \end{aligned}$ |
|  | -8.7 to -9.6, |  | $\mu-\mathrm{H}$, trans |
|  | m(1) |  | to $\mathrm{PMe}_{3}$ |
|  | -15.46, d of $\mathrm{t}(1)$ | $J(\mathrm{PH})=33,24$ | Ru-H |
| cis-RuHMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ | 1.29, t(18) | $J(\mathrm{PH})=3$ | trans $\mathrm{PMe}_{3}$ |
|  | 1.22, d(9) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$ |
|  | -0.24, d of d(3) | $J(\mathrm{PH})=9,8,5$ | Me |
|  | -9.80, d of d(1) | $J(\mathrm{PH})=91$, | H |
|  |  | 31,9 |  |
| $\begin{aligned} & {\left[c i s-\mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2}-} \\ & \mathrm{Hg} \cdot \mathrm{thf} \end{aligned}$ | 2-1.50, t(36) | $J(\mathrm{PH})=2$ | trans $\mathrm{PMe}_{3}$ |
|  | 1.34, d(18) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$, trans to Me |
|  | 1.19, s(18) |  | cis $\mathrm{PMe}_{3}$, |
|  |  |  | trans to Hg |
|  | -0.27, m(6) |  | Me |
| [ $c i s$-RuMe$\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{l}_{2} \mathrm{Hg}$ | 1.50, t(36) | $J(\mathrm{PH})=2$ | trans $\mathrm{PMe}_{3}$ |
|  | 1.33, d(18) | $J(\mathrm{PH})=5$ | cis $\mathrm{PMe}_{3}$, trans to Me |
|  | 1.19, t (18) | $J(\mathrm{PH})=2$ | cis $\mathrm{PMe}_{3}$, |
|  |  |  | ${ }_{\text {crans }} \mathrm{Me}$ to Hg |
|  | 1.23, 1.4 |  | $\mathrm{PMe}_{3}$ |
|  |  |  |  |
| ${ }^{a}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent referenced to $\mathrm{SiMe}_{4}(\delta 0.0), 250 \mathrm{MHz} .{ }^{\circ}$ In $\mathrm{CD}_{3} \mathrm{CN}$. |  |  |  |

vacuum. The residue was extracted with toluene ( $2 \times 30 \mathrm{~cm}^{3}$ ) and filtered. Concentration of the filtrate to $20 \mathrm{~cm}^{3}$ and cool-
ing to $-20{ }^{\circ} \mathrm{C}$ yielded $0.17 \mathrm{~g}(38 \%)$ of the known compound. ${ }^{5}$
(o-Methylenephenyl- $\mathrm{C}^{\prime} \mathrm{C}^{\alpha}$ )tetrakis(trimethylphosphine)ruthenium (II).-(a) A $0.93 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ in $\mathrm{Et}_{2} \mathrm{O}\left(0.7 \mathrm{~cm}^{3}, 0.7 \mathrm{mmol}\right)$ was added to a stirred solution of $c i s-\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}(0.28 \mathrm{~g}, 0.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3}\right) . \mathrm{A}$ white precipitate formed immediately. After 1 h the $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the residue extracted with light petroleum ( $2 \times 40 \mathrm{~cm}^{3}$ ). The filtered solution was concentrated to about $10 \mathrm{~cm}^{3}$, then cooled to $-20{ }^{\circ} \mathrm{C}$ to give white prisms which were washed with cold $\left(0^{\circ} \mathrm{C}\right)$ light petroleum ( $1 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield: $0.18 \mathrm{~g}, 59 \%$.
(b) To a suspension of trans- $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(2.27 \mathrm{~g}, 4.76$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ was added a $0.93 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}\left(11.0 \mathrm{~cm}^{3}, 10.2 \mathrm{mmol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred until all orange material had reacted (ca. 4 h ), then filtered, and the $\mathrm{Et}_{2} \mathrm{O}$ removed under vacuum. The residue was extracted with toluene ( $2 \times 50 \mathrm{~cm}^{3}$ ) and filtered. Concentration of the filtrate to $20 \mathrm{~cm}^{3}$ and recrystallization at $-20^{\circ} \mathrm{C}$ yielded white prisms which were washed with cold $\left(0^{\circ} \mathrm{C}\right)$ light petroleum ( $2 \mathrm{~cm}^{3}$ ), then dried in vacuo. Yield (two crops): $1.24 \mathrm{~g}, 53 \%$. I.r.: $1295 \mathrm{~m}, 1278 \mathrm{~m}, 1261 \mathrm{w}, 940 \mathrm{~s}, 854 \mathrm{~m}, 805 \mathrm{w}$, $725 \mathrm{~m}, 702 \mathrm{w}$, and $660 \mathrm{~m} \mathrm{~cm}^{-1}$. The solid darkens in air in a few seconds. The product also may be synthesized from $[\mathrm{Ru}(\mu-\mathrm{Cl})$ $\left.\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Cl}_{2}$ by the same procedure, with similar results.
mer-Hydrido(tetrahydroborato-HH')tris(trimethylphosphine)-ruthenium(II).-(a) A solution of cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ ( 1.01 $\mathrm{g}, 2.22 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{LiBH}_{4}$ ( $0.1 \mathrm{~g}, 5 \mathrm{mmol}$ ) for $c a .15 \mathrm{~h}$. The $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the residue extracted with toluene ( $2 \times 20 \mathrm{~cm}^{3}$ ). The extracts were filtered, concentrated to $5 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$ to give yellow prisms which were washed with light petroleum ( $2 \times 1 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield (two crops): $0.17 \mathrm{~g}, 92 \%$.
(b) The compound trans- $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}(0.63 \mathrm{~g}, 1.32 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(0.7 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3}\right)$ were stirred for $c a .15 \mathrm{~h}$. The $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the residue extracted with toluene ( $2 \times 30 \mathrm{~cm}^{3}$ ), which was filtered, concentrated to about $10 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$. The resulting yellow prisms were washed with light petroleum ( $2 \times 1 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield (two crops): 0.36 g , 79\%. I.r.: 2 383s, 2 369s, 2 318s, 1 932s, 1 422m, 1 352s, $1295-$ $\mathrm{m}, 1278 \mathrm{~s}, 1274 \mathrm{~s}, 1183 \mathrm{~s}, 938 \mathrm{~s}, 879 \mathrm{~m}, 853 \mathrm{~m}, 844 \mathrm{~m}, 716 \mathrm{~s}, 691 \mathrm{w}$, $666 \mathrm{~s}, 572 \mathrm{w}, 411 \mathrm{w}$, and $350 \mathrm{w} \mathrm{cm}^{-1}$. In air the solid darkens after several seconds and solutions are extremely air sensitive.

Table 7. ${ }^{31}$ P- $\left\{{ }^{1} \mathrm{H}\right\}$ N.m.r. data

| Compound | 8/p.p.m. ${ }^{\text {a }}$ |
| :---: | :---: |
| cis-RuClMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ | 14.9, t of d |
|  | -5.8, d of d |
|  | $-16.3, \mathrm{t}$ of d |
| cis-Ru( $\left.\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{Me}\left(\mathrm{PMe}_{3}\right)_{4}$ | 18.2, $t$ of d |
|  | -13.7 , t of d |
| $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \stackrel{\Gamma}{\mathrm{RuCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}}$ | -5.6, d of d |
|  | $-10.4, \mathrm{t}$ of d |
|  | -10.7 , tof d |
| $m e r-\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ | 18.0, t |
|  | 1.2, d |
| cis-RuHMe( $\left.\mathrm{PMe}_{3}\right)_{4}$ | $0.1, \mathrm{~d}$ of d |
|  | -6.9, $t$ of d |
|  | $-11.2, \mathrm{t}^{\text {of } \mathrm{d}^{c}}$ |
| $\left.\left[\text { cis-RuMe( } \mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg} \cdot \mathrm{thf}$ | 12.1, t (1:10:1) |
|  | -6.2, t (1: $10: 1$ ) of d |
|  | -12.8 , t |
| $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}{ }^{\text {e }}$ | 22.6, s |

$J / \mathrm{Hz}$
$J(\mathrm{PP})=34,18$
$J(\mathrm{PP})=34,24$
$J(\mathrm{PP})=24,18$
$J(\mathrm{PP})=36,21$
$J(\mathrm{PP})=21,21$
$J(\mathrm{PP})=27,27$
$J(\mathrm{PP})=27,13$
$J(\mathrm{PP})=27,13$
$J(\mathrm{PP})=34$
$J(\mathrm{PP})=34$
$J(\mathrm{PP})=26,25$
$J(\mathrm{PP})=26,21$
$J(\mathrm{PP})=25,21$
$J(\mathrm{HgP})=780$
$J(\mathrm{HgP})=341$,
$J(\mathrm{PP})=31$
$J(\mathrm{PP})=31$

Assignment
cis $\mathrm{PMe}_{3}$, trans to Cl trans $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$, trans to Me
cis $\mathrm{PMe}_{3}$, trans to $\mathrm{O}_{2} \mathrm{CMe}$
cis $\mathrm{PMe}_{3}$, trans to Me
trans $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$
trans $\mathrm{PMe}_{3}$
trans $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$, trans to $\mathrm{Me}^{b}$
cis $\mathrm{PMe}_{3}$, trans to $\mathrm{H}^{b}$
cis $\mathrm{PMe}_{3}$, trans to Hg trans $\mathrm{PMe}_{3}$
cis $\mathrm{PMe}_{3}$, trans to Me
$\mathrm{PMe}_{3}$
${ }^{a}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$, referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0.0), 101 \mathrm{MHz}$. ${ }^{b}$ These assignments may be reversed. ${ }^{c}$ When ${ }^{1} \mathrm{H}$-decoupled from -5 to +5 p.p.m. only, the resonance appears as a doublet of doublets, $J(\mathrm{PH})=90 \mathrm{~Hz}$. ${ }^{d}$ See Table 4 for $J(\mathrm{PP})$ values. ${ }^{e}$ In $\mathrm{CD} \mathrm{D}_{3} \mathrm{CN}$.

Table 8. Selected ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data

${ }^{a}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$, referenced to $\mathrm{SiMe}_{4}(\delta 0.0), 22.5 \mathrm{MHz}$. ${ }^{b}$ In $\left[{ }^{2} \mathrm{H}_{8}\right]$ thf.
cis-Hydridomethyltetrakis(trimethylphosphine)ruthenium-(iI).-(a) To a stirred solution of cis-RuClH $\left(\mathrm{PMe}_{3}\right)_{4}(0.10 \mathrm{~g}$, $0.23 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was added a $0.64 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ether solution of $\mathrm{MgMeCl}\left(0.4 \mathrm{~cm}^{3}, 0.25 \mathrm{~mol}\right)$. A white precipitate slowly formed. The mixture was stirred for 2 h , then the $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum. The residue was extracted with light petroleum $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, which was filtered, concentrated to $1 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$ to give white crystals. These were isolated and dried in vacuo. Yield: $0.06 \mathrm{~g}, 58 \%$.
(b) A solution of $c i s-\mathrm{RuClMe}\left(\mathrm{PMe}_{3}\right)_{4}(0.88 \mathrm{~g}, 1.91 \mathrm{mmol})$ in thf ( $50 \mathrm{~cm}^{3}$ ) was added to a suspension of $\mathrm{NaOMe}(0.17 \mathrm{~g}$, $3.2 \mathrm{mmol})$ in thf ( $50 \mathrm{~cm}^{3}$ ). The mixture was stirred at ambient temperature for 1 week. The thf was removed under vacuum
and the residue was extracted with light petroleum ( $2 \times 20$ $\mathrm{cm}^{3}$ ). The extracts were filtered, concentrated to $5 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$, producing pale yellow prisms which were dried in vacuo. Yield (two crops): $0.59 \mathrm{~g}, 73 \%$. I.r.: 1810 s , $1421 \mathrm{~m}, 1292 \mathrm{~s}, 1275 \mathrm{~s}, 1021 \mathrm{w}, 938 \mathrm{~s}, 852 \mathrm{~m}, 699 \mathrm{~m}$, and 660 s $\mathrm{cm}^{-1}$.

Tri- $\mu$-chloro-bis[tris(trimethylphosphine)ruthenium(iI)] Tetra-fluoroborate.-Protected from direct light, a solution of $\mathrm{AgBF}_{4}(0.52 \mathrm{~g}, 2.67 \mathrm{mmol})$ in thf $\left(50 \mathrm{~cm}^{3}\right)$ was added to a solution of cis-RuClMe $\left(\mathrm{PMe}_{3}\right)_{4}(1.19 \mathrm{~g}, 2.67 \mathrm{mmol})$ in thf ( $50 \mathrm{~cm}^{3}$ ). A white precipitate formed immediately. The reaction mixture was stirred for 2 h then filtered and the solution dried to a pale yellow solid under vacuum. The residue was extracted with $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$, the extract concentrated to about $30 \mathrm{~cm}^{3}$ and cooled to $-20^{\circ} \mathrm{C}$, giving pale yellow prisms which were washed with $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$, then with light petroleum ( $5 \mathrm{~cm}^{3}$ ), and dried in vacuo. Yield (two crops): $0.45 \mathrm{~g}, 40 \%$. I.r.: $1304 \mathrm{~s}, 1287 \mathrm{~s}, 1098 \mathrm{~m}, 1061 \mathrm{~s}, 1040 \mathrm{~m}$, $968 \mathrm{~s}, 948 \mathrm{~s}, 857 \mathrm{~m}, 844 \mathrm{w}, 723 \mathrm{~s}, 670 \mathrm{~m}, 523 \mathrm{w}$, and $377 \mathrm{w} \mathrm{cm}^{-1}$. $\Lambda_{M}=87.2 \Omega^{-1} \mathrm{~m}^{-1} .{ }^{19} \mathrm{~F}$ N.m.r. $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta-150.02(\mathrm{~s}$, $\mathrm{br}, 1 \mathrm{~F})$ and $-150.07(\mathrm{q}, 1: 1: 1: 1,4 \mathrm{~F})$. The product is stable in air for several days. It is insoluble in light petroleum, toluene, and $\mathrm{Et}_{2} \mathrm{O}$, only slightly soluble in thf, but soluble in MeOH and MeCN.

Bis[cis-methyltetrakis(trimethylphosphine)ruthenio]mercury-(iI)-Tetrahydrofuran(1/1).-A solution of cis-RuClMe$\left(\mathrm{PMe}_{3}\right)_{4}(0.72 \mathrm{~g}, 1.6 \mathrm{mmol})$ in thf $\left(50 \mathrm{~cm}^{3}\right)$ was added to $1 \%$ sodium amalgam ( 40 g ) and stirred for 2 d , when it was decanted from the Hg and the thf removed under vacuum. The residue was extracted with light petroleum $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ which was filtered and concentrated to $c a .10 \mathrm{~cm}^{3}$. The orange-brown solution was cooled to $-20{ }^{\circ} \mathrm{C}$, producing dark orange prisms, which were washed with cold $\left(0^{\circ} \mathrm{C}\right)$ light petroleum ( $1 \mathrm{~cm}^{3}$ ) and dried in vacuo. Yield (three crops): $0.73 \mathrm{~g}, 83 \%$. I.r.: $2810 \mathrm{w}, 1422 \mathrm{~m}, 1291 \mathrm{~s}, 1271 \mathrm{~s}, 1264 \mathrm{~m}, 1173 \mathrm{w}, 933 \mathrm{~s}$, $848 \mathrm{~s}, 838 \mathrm{~s}, 707 \mathrm{~m}, 690 \mathrm{~s}, 664 \mathrm{~s}, 651 \mathrm{~s}, 442 \mathrm{w}$, and 367 w ; in $\left(\mathrm{Cl}_{2} \mathrm{CCClF}\right)_{n}, 2972 \mathrm{~m}, 2914 \mathrm{~s}, 2810 \mathrm{w}, 1418 \mathrm{~m}$, and $705 \mathrm{~m} \mathrm{~cm}^{-1}$. The solid is extremely air sensitive, releasing free phosphine as it decomposes. It is very soluble in light petroleum, toluene, and ethers.

Table 9. Crystal data, intensity data collection, and refinement
(a) Crystal data

| Formula | $\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ | $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$ | [cis-RuMe( $\left.\left.\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$-thf |
| :---: | :---: | :---: | :---: |
| M | 344.8 | 850.3 | 1113.54 |
| Crystal system | Triclinic | Monoclinic | Triclinic |
| $a / \AA$ | 9.603(2) | 15.224(2) | 14.232(1) |
| b/A | 12.566(2) | $9.706(3)$ | 9.326(1) |
| $c / \AA$ | 8.572(2) | 13.135(2) | 18.728(4) |
| $\alpha /{ }^{\circ}$ | 91.11(2) |  | 90.34(1) |
| $\beta /^{\circ}$ | 117.43(2) | 111.90(1) | 89.08(1) |
| $\gamma /{ }^{\circ}$ | 75.30(1) | - | 104.21(1) |
| $U / \mathbf{A}^{3}$ | 882.3 | 1800.9 | 2409.1 |
| Space group | PI | P2/n | PI |
| $\boldsymbol{Z}$ | 2 | 2 * | 2 |
| $D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.30 | 1.57 | 1.53 |
| $F(000)$ | 374 | 740 | 1188 |
| $\mu / \mathrm{cm}^{-1}$ | 10.27 | 8.85 | 38.80 |
| (b) Data collection |  |  |  |
| Total data | 3412 | 3624 | 5566 |
| Total unique | 3102 | 3174 | 5154 |
| Total observed $\left(F_{0}>3 \sigma F_{0}\right)$ | 2910 | 2585 | 4564 |
| (c) Refinement |  |  |  |
| No. of parameters | 255 | 156 | 661 |
| Weight applied | Unit weights | $1 /\left[\sigma^{2}(F)+0.00025 F^{2}\right]$ | $1 /\left[\sigma^{2}(F)+0.0002 F^{2}\right]$ |
| $\boldsymbol{R}$ | 0.0235 | 0.0481 | 0.0289 |
| $R^{\prime}$ | 0.0235 | 0.0526 | 0.0316 |

* Cation thus has $C_{2}$ symmetry.

Table 10. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{4}$

| Atom | $x$ | $y$ | $z$ |
| :--- | :--- | :--- | :--- |
| Ru | $4841(0.5)$ | $2519(0.5)$ | $4609(0.5)$ |
| P(1) | $2124(1)$ | $3466(1)$ | $3501(1)$ |
| C(11) | $1325(6)$ | $3293(4)$ | $5019(7)$ |
| C(12) | $626(5)$ | $3061(5)$ | $1511(7)$ |
| C(13) | $1479(6)$ | $4980(3)$ | $3047(7)$ |
| P(2) | $4893(1)$ | $2658(1)$ | $2014(1)$ |
| C(21) | $6843(6)$ | $2714(6)$ | $2203(7)$ |
| C(22) | $3605(6)$ | $3928(4)$ | $513(6)$ |
| C(23) | $4366(8)$ | $1623(5)$ | $480(7)$ |
| P(3) | $7341(1)$ | $1224(1)$ | $6072(1)$ |
| C(31) | $9220(5)$ | $1650(5)$ | $6998(8)$ |
| C(32) | $7834(6)$ | $27(4)$ | $4991(7)$ |
| C(33) | $7561(6)$ | $503(4)$ | $8040(7)$ |
| B | $5441(6)$ | $3461(4)$ | $6969(6)$ |
|  |  |  |  |

Bis[cis-methyltetrakis(trimethylphosphine)ruthenio]mercury-(II).-Using cis-RuClMe $\left(\mathrm{PMe}_{3}\right)_{4}(0.53 \mathrm{~g}, 1.16 \mathrm{mmol})$ in toluene ( $50 \mathrm{~cm}^{3}$ ), the above procedure was repeated. Yield: $0.044 \mathrm{~g}, 72 \%$. I.r.: $2801 \mathrm{w}, 142 \mathrm{~lm}, 1292 \mathrm{~s}, 1271 \mathrm{~s}, 1117 \mathrm{w}$, $935 \mathrm{~s}, 848 \mathrm{~s}, 837 \mathrm{~m}, 705 \mathrm{w}, 689 \mathrm{~s}, 662 \mathrm{~s}, 651 \mathrm{~s}, 445 \mathrm{w}$, and 364 w $\mathrm{cm}^{-1}$; in $\left(\mathrm{Cl}_{2} \mathrm{CCClF}\right)_{n}, 2971 \mathrm{~m}, 2910 \mathrm{~s}, 2805 \mathrm{w}, 1418 \mathrm{~m}$, and $708 \mathrm{~m} \mathrm{~cm}^{-1}$.

Crystallography.-The structures of the three compounds were determined using routine methods with intensity data collected in the $\omega-2 \theta$ scan mode at 295 K on a CAD 4 diffractometer using Mo- $K_{\alpha}$ radiation. ${ }^{20}$ Details of the crystal data, intensity recording, and refinements are given in Table 9. All intensity data were corrected for absorption. ${ }^{26}$ Final atomic co-ordinates are given in Tables 10-12. For the borohydride and mercury compounds all hydrogen-atom positions were experimentally determined and refined freely with isotropic thermal parameters. No hydrogen atoms were included

Table 11. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{3}\right] \mathrm{BF}_{4}$

| Atom | $x$ | $y$ | $z$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{Ru}(1)$ | $2329(0.5)$ | $8247(1)$ | $-1341(0.5)$ |
| $\mathrm{P}(1)$ | $3345(1)$ | $7153(2)$ | $148(2)$ |
| $\mathrm{C}(11)$ | $3255(7)$ | $5252(9)$ | $63(8)$ |
| $\mathrm{C}(12)$ | $4584(6)$ | $7412(11)$ | $383(8)$ |
| $\mathrm{C}(13)$ | $3384(8)$ | $7479(11)$ | $1551(7)$ |
| $\mathrm{P}(2)$ | $1005(1)$ | $7332(2)$ | $-1234(2)$ |
| $\mathrm{C}(21)$ | $-35(6)$ | $8462(10)$ | $-1798(9)$ |
| $\mathrm{C}(22)$ | $889(7)$ | $6847(11)$ | $53(8)$ |
| $\mathrm{C}(23)$ | $624(7)$ | $5762(10)$ | $-2040(9)$ |
| $\mathrm{P}(3)$ | $2269(1)$ | $10200(2)$ | $-449(2)$ |
| $\mathrm{C}(31)$ | $3424(7)$ | $11020(10)$ | $235(9)$ |
| $\mathrm{C}(32)$ | $1610(9)$ | $11596(9)$ | $-1311(10)$ |
| $\mathrm{C}(33)$ | $1795(9)$ | $10226(11)$ | $677(9)$ |
| $\mathrm{Cl}(1)$ | $3625(1)$ | $9232(2)$ | $-1838(2)$ |
| $\mathrm{Cl}(2)$ | 2500 | $6352(3)$ | -2500 |
| B |  | 0 | $6138(13)$ |
| $\mathrm{F}(11)$ | $-2183(10)$ | $6678(12)$ | $-3179(11)$ |
| $\mathrm{F}(12)$ | $-1765(9)$ | $5313(12)$ | $-2022(10)$ |
| $\mathrm{F}(21)$ | $-1837(14)$ | $6242(17)$ | $-1335(15)$ |
| $\mathrm{F}(22)$ | $-2708(13)$ | $7461(16)$ | $-2323(15)$ |
| $\mathrm{F}(31)$ | $-336(18)$ | $5928(20)$ | $-2562(19)$ |
| $\mathrm{F}(32)$ | $-2258(18)$ | $4733(19)$ | $-2497(20)$ |

for the $\mathrm{BF}_{4}{ }^{-}$salt, where anion disorder has resulted in a less accurate structure analysis. The disorder of the anion, which sits on a two-fold axis, is quite complex, and could not easily be modelled in terms of interlocking tetrahedra. The most stable refinement was obtained by including partial $F$ atoms at the sites of the major electron-density peaks, and adjusting the partial occupancies such that (a) all isotropic thermal parameters refined to broadly similar values and (b) the occupancies summed to ca. 2. Details of the values obtained are given in SUP 23951.

Table 12. Atom co-ordinates ( $\times 10^{4}$ ) for $\left[\text { cis- } \mathrm{RuMe}\left(\mathrm{PMe}_{3}\right)_{4}\right]_{2} \mathrm{Hg}$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ | Atom | $\boldsymbol{x}$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hg | 8 143(0.5) | $3866(0.5)$ | $2758(0.5)$ | C(51) | 12 174(8) | 4 968(6) | 3 016(5) |
| Ru(1) | 7 012(1) | $1932(0.5)$ | $3146(0.5)$ | C(52) | 10 294(8) | 5511 (6) | 3 974(4) |
| $\mathrm{P}(1)$ | 8 685(2) | $1638(1)$ | 2 296(1) | C(53) | 12 306(8) | 6 932(6) | 3 250(5) |
| C(11) | 10 605(8) | $2359(6)$ | 2328 (5) | $\mathrm{P}(6)$ | 7 214(2) | $5147(1)$ | $1365(1)$ |
| C(12) | $9083(9)$ | 421(6) | 2 216(5) | C(61) | 5 378(8) | 4 703(7) | $1714(5)$ |
| C(13) | 8 358(10) | $1794(6)$ | $1357(4)$ | C(62) | 7 203(9) | 4 160(6) | 751(5) |
| $\mathrm{P}(2)$ | 5 620(2) | 2 655(1) | 3 910(1) | C(63) | 6 665(10) | 5 935(7) | 705(5) |
| C(21) | 4340 (9) | $1933(6)$ | 4 592(5) | $\mathrm{P}(7)$ | 7 930(2) | 6 589(1) | 2 804(1) |
| C(22) | 6 562(8) | 3 644(6) | 4 517(4) | C(71) | 8 899(9) | 7 618(6) | 3 362(5) |
| C(23) | 4 273(8) | 3 243(6) | 3 526(5) | C(72) | 6 558(9) | 6 020(6) | 3 466(5) |
| P(3) | 8 597(2) | 1780 (2) | 4 057(1) | C(73) | $6764(9)$ | 7 247(6) | $2334(5)$ |
| C(31) | $9709(9)$ | 866(6) | 3 998(5) | P(8) | 10 656(2) | 6 929(2) | $1471(1)$ |
| C(32) | 10 077(8) | $2828(6)$ | 4 329(5) | C(81) | 12621 (9) | 6937(7) | $1354(5)$ |
| C(33) | 7840 (9) | $1381(6)$ | 4 957(4) | C(82) | $10983(11)$ | 8 209(6) | $1717(6)$ |
| P(4) | 5 469(2) | 388(2) | $3126(1)$ | C(83) | $10308(10)$ | 7 056(8) | 532(5) |
| C(41) | 5 692(11) | -584(6) | 3 703(6) | C(2) | $10362(8)$ | 4 802(5) | $1472(4)$ |
| C(42) | 5 275(10) | - 328(7) | 2 291(5) | $\mathrm{O}(1 \mathrm{a})$ | $6850(12)$ | 8 174(9) | -621(7) |
| C(43) | 3 490(8) | 278(7) | 3 248(7) | C(la) | $5729(15)$ | $8296(12)$ | $-79(10)$ |
| C(1) | 5 494(8) | 2 089(6) | 2 263(5) | C(2a) | $6347(15)$ | 8 921(12) | 443(10) |
| $\mathrm{Ru}(2)$ | $9218(1)$ | 5683 | 2143 | C(3a) | 7 678(15) | 9 586(12) | -41(10) |
| $\mathrm{P}(5)$ | $10930(2)$ | $5782(1)$ | 3046 (1) | C(4a) | 7 646(15) | 9200 (12) | $-703(10)$ |

## Acknowledgements

We thank the National Science Foundation for a NATO Postdoctoral Fellowship and the Ramsay Memorial Trust for an honorary fellowship (to J. A. S.). We also thank Johnson Matthey PLC for a loan of ruthenium trichloride and the S.E.R.C. for the $X$-ray facility.

## References

1 J. Chatt and R. G. Hayter, J. Chem. Soc., 1963, 6017.
2 J. Chatt and J. M. Davidson, J. Chem. Soc., 1965, 843.
3 D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 797.
4 R. A. Porter and D. F. Shriver, J. Organomet. Chem., 1975, 90, 41.

5 R. A. Andersen, R. A. Jones, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1978, 446.
6 R. A. Jones, F. Mayor Real, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1980, 551.
7 R. A. Jones, G. Wilkinson, I. J. Colquohoun, W. McFarlane, A. M. R. Galas, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1980, 2480.
8 R. H. Crabtree and A. J. Pearman, J. Organomet. Chem., 1978, 157, 335.
9 D. J. Holah, A. N. Hughes, B. C. Hui, and C. T. Kan, J. Catal., 1977, 48, 340.
10 J. B. Letts, T. J. Mazanec, and D. W. Meek, Organometallics, 1983, 2, 695; J. B. Letts, T. J. Mazanec, and D. W. Meek, J. Am. Chem. Soc., 1982, 104, 3898; T. J. Mazanec, J. B. Letts, and D. H. Meek, J. Chem, Soc., Chem. Commun., 1982, 356.

11 J. L. Atwood, W. E. Hunter, E. Carmona Guzman, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1980, 467.
12 B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 1546.
13 K. G. Srinivasamurthy, N. M. Nanji Gowda, and G. K. N. Reddy, J. Inorg. Nucl. Chem., 1977, 39, 1977.
14 P. W. Armir and T. A. Stephenson, J. Organomet. Chem., 1973, 57, C80.
15 J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896.
16 N. W. Alcock and K. A. Raspin, J. Chem. Soc., Dalton Trans., 1982, 2108.
17 R. Chioccola and J. J. Daly, J. Chem. Soc. A, 1968, 1981.
18 L. W. Gosser, W. H. Knoth, and G. W. Parshall, J. Am. Chem. Soc., 1973, 95, 3436.
19 T. W. Ashworth, M. J. Nolte, and E. Singleton, J. Chem. Soc., Chem. Commun., 1977, 936.
20 M. B. Hursthouse, R. A. Jones, K. M. A. Malik, and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.
21 S. A. R. Knox and F. G. A. Stone, J. Chem. Soc. A, 1971, 2874.
22 T. Blackmore, J. D. Cotton, M. I. Bruce, and F. G. A. Stone, J. Chem. Soc. A, 1968, 2931.

23 R. D. Fischer, A. Volger, and K. Noack, J. Organomet. Chem., 1967, 7, 135.
24 D. Sellmann and E. Bohlen, Z. Naturforsch., Teil B, 1982, 37, 1026.

25 H. V. Brown and C. J. Shoaf, J. Am. Chem. Soc., 1968, 86, 1079.
26 A. C. T. North, D. C. Phillips, and F. S. Matthews, Acta Crystallogr., Sect. A, 1968, 24, 351.

Received 26th October 1983; Paper 3/1907


[^0]:    $\dagger$ Supplementary data available (No. SUP 23951, 69 pp.): thermal parameters, H -atom co-ordinates, complete bond lengths and angles, F-atom occupancies, structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix.

